

FACULTY OF ENGINEERING & TECHNOLOGY

Effective from Academic Batch: 2022-23

Programme: BACHELOR OF TECHNOLOGY (Electronics and Communication)

Semester: IV

Course Code: 202060404

Course Title: Signals and Systems

Course Group: Professional Core Course

Course Objectives: To understand the fundamental concept of Signal and System with its properties and operations. It is also aimed to develop better insight among the students regarding the Fourier series and Fourier transform and its application along with filter design.

Teaching & Examination Scheme:

Conta	ct hours pe	er week	Course Examination Marks (Maximum / Pas					sing)
Locturo	Tutorial	Dractical	Credits	Theory		J/V/P*		Total
Lecture	Lecture Tutorial			Internal	External	Internal	External	lotai
3	0	2	4	50/18	50/17	25/9	25/9	150/53

^{*} J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours
1	Introduction of signals: Definition of signal and system, The domain and range	7
	variables, continuous and discrete signals, continuous and discrete systems.	
	Cont./discrete vs analog/digital. Signal classification and basic operations,	
	Domain and range operations and transformations, and their effects upon signals.	
	Examples and counter examples.	
2	Continuous Time (CT) Systems and Discrete Time (DT) Systems:	7
	Characterization of CT and DT systems: Static and Dynamic systems, Causal and	
	Non-causal system, Linear and Non-linear system, Time variant and invariant	
	system, Stable and unstable system, Invertible and non-invertible system, LTI	
	Systems, Examples.	

3	Convolution and Correlation of Signals: Evolution of the convolution integral	7
	and the convolution sum. Continuous time convolution and Discrete-time	
	Convolution, Algebraic properties of the convolution operation. Block diagram	
	representations for interconnections of systems. Characterizing a system from its	
	impulse response. Characterizing interconnected systems. Auto correlation and	
	Cross correlation of signals, Energy Spectral Density and Power Spectral Density	
	(PSD), Examples.	
4	Fourier Series and Fourier Transform for Continuous Time Signal: Vector	8
	representation of signal, Orthogonal signal space, Fourier series and its properties,	
	trigonometric and exponential Fourier series, Magnitude and Phase Spectrum,	
	Parseval's Theorem. Continuous time Fourier Transform and its properties.	
5	Z-Transforms: The z-Transform, Region of Convergence, Inverse z-Transform,	8
	Geometric Evaluation of the Fourier Transform from the Pole-Zero Plot, Properties	
	of the z-Transform, Applications, and examples.	
6	Analog Filter Design: Introduction, Classification of filters – LPF, HPF, BPF, BSF,	8
	Types of filters – Butterworth, Chebyshev, Elliptic, Bessel, Analytical	
	Approximation, and design.	
		45

List of Practicals / Tutorials:

List	of Practicals / Tutorials:
1	Introduction of MATLAB and various commands for Signal and System perspective.
2	Generate and plot basic signals – Impulse, Unit Step, Ramp, Signum using MATLAB
	Toolbox. Further generate and plot various complex signals using time shifting, scaling
	and time reversal properties.
3	Generate the following continuous time domain signal and plot using MATLAB
	(i) Sine/Cosine signal (ii) Sinc function (iii) Triangle waveform (iv) Rectangular Pulse (v)
	Sawtooth Waveform (vi) Exponential function
4	To study and verify the following properties of signal/system using MATLAB (i)
	Linearity (ii) Stability (iii) Time invariant.
	Find the Energy and Power of the given signal.
	Separate Even and odd components of given signal and plot respectively.
5	To Study convolution of following different sequences using MATLAB (without using conv
	command) and plot the resultant signal.
	(i) Convolution between two rectangular signals.
	(ii) Convolution between rectangular and Triangular signals.
	(iii) Convolution between two Triangular signals.
6	To Study the Fourier series of Square, Sawtooth and Triangular waves using MATLAB and
	LabVIEW.
7	To Study Fourier Transform of a signal using FFT and IFFT command and plot magnitude
	and phase spectra of a signal using MATLA/LabVIEW.
8	To study Convolution Property of Fourier transform for signal using MATLAB / LabVIEW.
9	To study Correlation and Auto correlation of signal using MATLAB/LabVIEW.
10	To Study Z Transform and plot region of Convergence using MATLAB Toolbox.
11	To study Low Pass, High Pass and Band pass filter using discrete components and plot their
	characteristic.

Designed Based Open-Ended Problem: Develop a small project where real time noisy signal is captured, and noise free signal will be reproduced after processing. [Use signal processing technique to remove noise]

Hint: LabVIEW/MATLAB can be used for the processing of the captured signal.

Reference Books:

1	Oppenheim, Will sky, and Hamid, Signals and Systems , 2 nd Edition, Prentice-Hall.
2	A. Anand Kumar, Signals and Systems , 3 rd Edition, Prentice Hall Publication.
3	B.P. Lathi, Principal of Signal Processing and Linear system , 3 rd Edition, Oxford Univ.
	Press.
4	Wai-Kai Chen, Passive and Active Filters: Theory and Implementations , 1st Edition, Wiley
	India.

Supplementary learning Material:				
1	NPTEL Video lectures			
2	MIT courseware material.			
3	Research papers from reputed Journals (IEEE, Elsevier, Springer etc.)			

Pedagogy:

- Direct classroom teaching
- Audio Visual presentations/demonstrations
- Assignments/Quiz
- Continuous assessment
- Interactive methods
- Seminar/Poster Presentation
- Industrial/Field visits
- Course Projects

Internal Evaluation:

The internal evaluation comprised of written exam (40% weightage) along with combination of various components such as Certification courses, Assignments, Mini Project, Simulation, Model making, Case study, Group activity, Seminar, Poster Presentation, Unit test, Quiz, Class Participation, Attendance, Achievements etc. where individual component weightage should not exceed 20%.

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %			larks i	n %	R : Remembering; U : Understanding; A : Applying;	
R	U	A	N	E	С	N: Analyzing; E: Evaluating; C: Creating
15	40	10	15	10	10	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage

CO-1	To understand the various applications and operation of signals and	15
	systems.	
CO-2	To study the analysis of signal using convolution and correlation	25
	functions.	
CO-3	To study the Properties of Fourier and Z-transform and their	20
	application in the Communication field.	
CO-4	To study about analysis of continuous time signals and systems.	20
CO-5	To develop an understanding for filter designing and its operations.	20

Curriculum Revision:				
Version:	2.0			
Drafted on (Month-Year):	June -2022			
Last Reviewed on (Month-Year):	-			
Next Review on (Month-Year):	June-2025			